Collective motion occurs inevitably in a class of populations of globally coupled chaotic elements
نویسندگان
چکیده
منابع مشابه
Confined chaotic behavior in collective motion for populations of globally coupled chaotic elements
The Lyapunov exponent for collective motion is defined in order to characterize chaotic properties of collective motion for large populations of chaotic elements. Numerical computations for this quantity suggest that such collective motion is always chaotic, whenever it appears. Chaotic behavior of collective motion is found to be confined within a small scale, whose size is estimated using the...
متن کاملOn the Collective Motion in Globally Coupled Chaotic Systems
A mean–field formulation is used to investigate the bifurcation diagram for globally coupled tent maps by means of an analytical approach. It is shown that the period doubling sequence of the single site map induces a continuous family of periodic states in the coupled system. This type of collective motion breaks the ergodicity of the coupled map lattice. The stability analysis suggests that t...
متن کاملCollective phase description of globally coupled excitable elements.
We develop a theory of collective phase description for globally coupled noisy excitable elements exhibiting macroscopic oscillations. Collective phase equations describing macroscopic rhythms of the system are derived from Langevin-type equations of globally coupled active rotators via a nonlinear Fokker-Planck equation. The theory is an extension of the conventional phase reduction method for...
متن کاملDominant collective motion in globally coupled tent maps
We investigate collective motion in high dimensional chaos, where all elements in a population behaves chaotically and incoherently in appearance. Numerical experiments for globally coupled tent maps show the existence of a quasi-periodic collective motion even under slight interaction. It is found that the amplitude of the collective motion F is scaled as, KF ∝ exp(−K−1), by the coupling stren...
متن کاملBifurcations in Globally Coupled Chaotic Maps
We propose a new method to investigate collective behavior in a network of globally coupled chaotic elements generated by a tent map. In the limit of large system size, the dynamics is described with the nonlinear FrobeniusPerron equation. This equation can be transformed into a simple form by making use of the piecewise linear nature of the individual map. Our method is applied successfully to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1998
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.57.1570